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Abstract—The use of unmanned aquatic surface vehicles as
a tool for exploring and inspecting bodies of water, such as
lakes and ponds is a research area of growing interest. However,
using real aquatic vehicles to test and develop software and
control systems is often not feasible for many researchers, due
to the limited access to testing pools and the lack of availability
of low-cost, off-the-shelf surface vehicles. An alternative is to
utilise software simulations, but these can fail to test important
system features, such as error characteristics of real sensors,
on-board processing and the effect of external disturbances on
the performance of positional control systems. The contribution
of the present paper is a third method that allows the robot’s
full software system including real world sensors to be tested
without the need for pool facilities. This is achieved by mapping
the physics of an omnidirectional aquatic surface robot onto an
omnidirectional ground vehicle. A dynamic model of the aquatic
surface vehicle is deployed within an embedded control system
on the ground vehicle, meaning that for a given command signal
(applied force) the motion of the ground vehicle mimics the
motion that would occur if it were a surface vehicle floating
on a body of water. Validation tests demonstrate that the ground
vehicle’s dynamic behaviour matches well with that of a specific
aquatic surface vehicle that was utilised in this study. However,
by changing the dynamic model within the embedded control
system, the ground vehicle is able to approximate the motion of
any aquatic surface vehicle. The newly constructed ground robot
is now an open-source and open-hardware platform.

Index Terms—Autonomous Surface Vehicle, Omnidirectional,
Autonomous Robot, Extreme Environments

I. INTRODUCTION

OBOTIC systems can be highly advantageous when

used in extreme environments, where tasks can be
performed that might otherwise put humans in danger.
Robotics in extreme environments (REE) covers various
applications such as monitoring and inspection of storage
facilities, characterisation of legacy or post disaster facilities
and decommissioning of contaminated sites. There are
significant challenges when using robotic systems in
extreme environments. Most notably, the environments
can be unknown, highly unstructured and may contain
radiological, thermal, and chemical hazards. For inspection
and characterisation, a number of customised systems have
been developed. For example, the AVEXIS [1] system
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Fig. 1. MallARD (sMall Autonomus Robotic Duck), an autonomous surface
vehicle developed for inspection in extreme environments.

was developed for the monitoring of hazardous underwater
environments. The AVEXIS robot was designed to be a low-
cost remotely operated underwater vehicle (ROV), able to
be deployed through limited access points measuring 150
mm. The potential for deploying AVEXIS, with integrated
radiation detectors and sonar, at the Fukushima-Daiichi power
plant to locate and characterisation fuel debris was assessed
in [2]. Several other robots have been designed to address
inspection challenges in the nuclear industry. These include
ground vehicles, such as CARMA [3], designed to survey floor
areas for alpha contamination and UAVs, utilised by Sato et
al. [4] to deploy a Compton camera to generate a radiation map
of the turbine hall at the Fukushima-Daiichi nuclear power
plant.

Performing in-field inspection of spent fuel ponds (SFPs)
is one of the key elements of effective nuclear safeguards.
Every year facility operators and outside agencies, such as
The International Atomic Energy Agency (IAEA), conduct
thousands of inspections worldwide. Various types of detectors
are used to measure characteristics of the stored spent fuel. For
example, underwater gamma ray detectors, which are available
in very small sizes, are moved closer to the spent fuel to
measure the intensity of gamma radiation. These detectors
are currently manually transported across the storage ponds,
which is a very time-consuming process that requires workers
to spend extended periods of time in hazardous environments.
However, these detectors can be carried by autonomous surface
vehicles (ASVs), allowing rigorous, autonomous inspection of



the facilities with minimal risk to operators.

There are many ASVs which have been developed for use
in various applications, however, the vast majority of systems
are designed for marine environments and are not suited to
use in an SFP due to their large size and lack of positional
accuracy [5]-[7]. The MallARD platform (Fig. 1) is an ASV
which has been developed for use in SFPs and can follow a
preplanned trajectory with cm accuracy. Typically MallARD
will cover its working area in stripes, like a lawnmower,
following the rows of fuel assemblies. Holding straight lines
and maintaining orientation in the presence of disturbances,
such as water flow within the pond, is critical to system
functionality. Accurate locomotion is achieved on MallARD
through the use of low-level motion controllers, which are the
subject of active research at The University of Manchester.

Testing and development of aquatic robots can be
problematic. Pool facilities are expensive to install and
maintain and hence access to such resources can be restricted.
Furthermore, when building a surface vehicle, all external
components must be waterproof, enclosures must be watertight
and cables must be properly glanded. There are also health
and safety implications associated with working near deep
water. This is why University of Manchester researchers
have developed a ground vehicle, EI-MallARD, which can
mimic the dynamic behaviour of any aquatic surface vehicle.
Thus allowing control and instrumentation systems to be
designed and tested without the need for access to a large-
scale pond. The EI-MallARD platform has been designed to
receive numeric control signals that are equivalent to body
forces/moments. These control signals are processed by an
on-board microcontroller, which utilises a dynamic system
model of the MallARD ASYV, to deliver appropriate velocity
commands to each of the four wheels of the robot to mimic
the behaviour of the aquatic platform. The following sections
describe the El-MallARD platform, which is now an open-
source research platform, designed to facilitate the testing
and development of software and motion control systems for
aquatic vehicles.

II. HARDWARE DESIGN PROFILE

EL-MallARD has been developed as a low-cost and open-
source platform. Table I shows the list of components which
were used for this robot and their costs while Fig. 2
shows a photograph of the EL-MallARD robot. The robot’s
hardware consists of three main parts: I) chassis, II) four
omnidirectional wheels driven by encoded DC motors, III)
Five microcontrollers, with one acting as the master to four
slaves.

The robot has four Mecanum wheels that it can use to
reach a velocity relative to the coordinate system shown on
Fig. 3 in any direction with a rotation about its centre. The
size of the robot is 35 cm x 41 cm with maximum forward
speed of 0.35 m/s. It uses four gear-head DC motors with
encoders which send feedback from rotational displacement
of the motors. Each motor is controlled independently using
pulse-width-modulation (PWM). Each motor has a separate

Fig. 2. EL-MallARD, a physical simulation of an autonomous surface vehicle.
The LiDAR affixed is not a necessary component and is used in the present
work for validation purposes

TABLE 1
LIST OF COMPONENTS AND COST

Component Cost (£)
Chassis with motors 250
Small PC e.g. Raspberry Pi (optional) 32
Master Arduino (Arduino UNO) 9.5
Motors’ processors (Arduino UNO) 38
Battery (5 Ah) 80

PS4 joypad (optional) 50

processing unit (Arduino UNO) which generates the required
PWM signals driven by a H-bridge.

III. SOFTWARE ARCHITECTURE

Figure 4 presents a flow diagram of the information path
and processing elements that are present on the EI-MallARD
system. The joypad inputs are linearly scaled to body frame
forces in x,y and torque in 1. The state transition function is
then used to generate a new body frame velocity request using
the previous velocity and the body force and torque inputs.
The four individual wheel velocities are then calculated using
the velocity allocation matrix. The wheel velocity requests are
passed to the the PI controller which reads the actual wheel
velocities from the wheel encoders and outputs PWM duty-
cycle signals to the motors via a H-bridge.

A. Three DOF Dynamic model of surface vehicle

The transform between body frame input force values (sent
from the joy-pad) to velocities in the same body frame requires
a dynamic system model of the MallARD to be running
on-board the master microcontroller. This section describes
the dynamic equations of motion and how the equations are
transformed such that they can be deployed on the master
microcontroller. Using the axis orientation convention of [§]
and following the methods of [9]-[12] the dynamic model of



%o TABLE II
7 NOMENCLATURE

‘ | ! Symbol Description Unit
23cm ‘ m mass kg
i = i u linear velocity in the = direction m/s
‘ v linear velocity in the y direction m/s
I = 15¢ X I yaw .rate o rads/s2
i { I zz

rotational inertia about COM, z — y plane  kgm
T,y forces in the x,y directions N
Ty torque about COM, x — y plane Nm
RNLz,yp  non-linear drag coefficients, x,y, ¢ dir. kg
; linear drag coefficients, x, y, ¢ dir. kg/s

: 1 derivative with respect to time

| i I absolute value

' k sample number

: At time between sample k and sample £k —1 s

40 cm

<
41 cm
e

: i WA.B.C.D velocity of wheel A,B,C,.D
- T wheel radius

m
Iy see Figure 3 m

C <1, = 15 cm—»l ly see Figure 3 m
Umodel velocity or yaw rate from Equation 4 m/s
Vo initial velocity or yaw rate m/s

Fig. 3. Mechanical profile of EL-MallARD mobile robot.

the MallARD in the non-inertial body frame may be expressed
as:

Joy-pad inputs m (U - TU) =T — Rnpa |u| u— Rpzu

m (0 —ru) =T, — Rypy |[v|v — Rrgv (1)

I Izz"":Tw*RNLw |T‘T’*RLw7'
Body frame

f .
orses The terms rv and ru represent virtual forces that must be

included due to the non-inertial reference frame; their function
is to maintain linear momentum in the inertial frame in the

Dynamic state

transition function presence of angular velocities. Coriolis forces are ignored
due to their vanishing magnitudes over the distances typically
| covered.
Body frame

For Equation 1 to be utilised on EI-MallARD it must be
converted into a state transition function. The state transition
function computes the current velocity using the previous
velocity and force/moment inputs:

velocities

Kinematic velocity Motor encoders

allocation
At
Up = Up—1 + {7p — RNLa |Uk—1]|Uk—1 — RpoUr—1} P + rvR_1
Individual wheel Actual wheel At
velocity requests ctual whee — _ _ f—
velocities Vg = V-1 + {7y — RNLy |Vk—1]|Vk—1 — Rryvr—1} m + rug—_1
Tk =Tk—1+ {7y — RNy |Th—1|The1 — RpyTh— 1}*
Pl controller <€ e 2)

PWM signals B. Velocity control

To allow the El-MallARD platform to mimic the dynamic
behaviour of an aquatic surface vehicle it is necessary to
Motors be able to accurately control the velocity of the robot. To
achieve this the master microcontroller must be able to
receive inputs as body frame velocities and convert these into
wheel frame velocities to send to the slave microcontrollers.
Equation (3) [13] provides the kinematic relationship between

Fig. 4. El-MallARD schematic flow diagram



velocities in the body frame to the individual wheel frame
velocities:

waA 1 -1 - (l.L + ly)

wp _ 1 1 1 (ZT + ly) 3)
we r 1 1 — (lz —+ ly)

wp 1 -1 (lm + ly)

The slave microcontrollers receive the required wheel
velocities (w) from the master microcontroller and these
velocities are then held at their required values by reading the
motor’s encoders and adjusting the PWM signal sent to the
motor driver for each wheel using a standard digital velocity
form PI controller.

IV. EXPERIMENTS & RESULTS

To assess the ability of EI-MallARD to mimic the
dynamic behaviour of the aquatic MallARD, experiments were
conducted in two configurations, along the x-axis and y-axis.
The robot was accelerated up to a velocity of approximately
0.25 m/s in a straight line and then no further control inputs
were sent to the robot. The decaying velocity of the robot was
measured using a LiDAR and SLAM algorithm running on an
embedded Raspberry Pi.

Equation (4) describes the velocity decay that is derived by
solving (1) with the applied and virtual forces removed:

RLvoeRit
RnL
Umodel = R Rpt (4)
Vo + RNLL — U, m

where v,04e1 and v, are the expected and initial velocities in
either the x or y directions.

Fig. 5 and 6 compare the recorded velocities from
MallARD, El-MallARD, and the model (4). These figures
show that the response of the real robots match each other
and also match the velocities from the model accurately.
With the mass of the system set to 20 kg, curve fitting was
used to determine values for the Ry; and Rj; parameters
in the velocity model (4). The values that were found to
minimise the sum of square errors (SSE = Y7 (Umoder —
vmbot)g) as suggested by [14] are shown in Table III. The
coefficient of determination, RZ, was calculated as R? =

1- L;ST?, where SST is the total corrected sum of squares

(SST = Z?(Umodel - Uavg)2 and Vayy = Z;’ Urobot /).
Table III shows the model parameters and the coefficient
of determination, R2, which demonstrates that the model
approximated the velocity recorded from El-MallARD with
high accuracy with a coefficient of determination of R? >
0.97.

TABLE III
VELOCITY EQUATION’S PARAMETERS

Studied axis | RyL | RL | R?

x-axis -29 2 0.978

y-axis -25 -2 0.979
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Fig. 5. Velocity of robot in x-axis recorded from El-MallARD (blue line)
and MallARD (orange line) experiments. And, red line indicates predicted
velocity from the model for x-axis.
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Fig. 6. Velocity of robot in y-axis recorded from El-MallARD (blue line)
and MallARD (orange line) experiments. And, red line indicates predicted
velocity from the model for y-axis.

V. CONCLUSION

This paper presents an open-source land vehicle, El-
MallARD, which is a low-cost, 4-wheel omnidirectional
ground robot, able to mimic the behaviour of generic
floating robotic vehicles. The primary benefit of the El-
MallARD is that it allows research to be conducted on
floating platforms, such as those used for the inspection
of ponds or lakes, without requiring access to large pools
of water, which are not always available in academic or
industrial laboratory environments. The paper provides details
of how El-MallARD was configured to mimic the behaviour
of a specific floating platform, MallARD, which has been
designed to inspect nuclear storage facilities. However, the



embedded microcontrollers on the EI-MallARD utilise a
dynamic model, which when adjusted alters the characteristics
of the robot allowing it to mimic the behaviour of any
other floating platform. The results from a series of motion
control experiments demonstrated that the response of the
El-MallARD matched that of the aquatic MallARD with a
coefficient of determination of R? = 0.97, illustrtaing its
ability to accurately approximate the behaviour of that specific
robot. The El-MallARD can therefore be used as a general
purpose tool for undertaking research related to the study of
autonomous control of aquatic surface vehicles.
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