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Abstract

- Barry Lennox’ - Farshad Arvin'

Flocking is a social animals’ common behaviour observed in nature. It has a great potential for real-world applications
such as exploration in agri-robotics using low-cost robotic solutions. In this paper, an extended model of a self-organised
flocking mechanism using heterogeneous swarm system is proposed. The proposed model for swarm robotic systems is a
combination of a collective motion mechanism with obstacle avoidance functions, which ensures a collision-free flocking
trajectory for the followers. An optimal control model for the leader is also developed to steer the swarm to a desired goal
location. Compared to the conventional methods, by using the proposed model, the swarm network has less requirement
for power and storage. The feasibility of the proposed self-organised flocking algorithm is validated by realistic robotic

simulation software.
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1 Introduction

Flocking, a collective motion of individuals with a lim-
ited communication ability, is a social animals’ common
behaviour observed in nature [1]. There are many types of
collective motions in nature mainly found in living organ-
isms and social animals, such as shoals of fish [2], flocks
of birds [3] and swarms of wildebeest [4]. In addition,
Kaiser et al. [5] have demonstrated that microscopic col-
loidal particles show collective motion in presence of mag-
netic fields. Inspired by the collective behaviours, swarm
robotics has been emerged as a research topic that provides
collective strategies for a large number of simple robots
in order to achieve fascinating collective behaviours [6,
7]. These collective behaviours potentially provide promis-
ing solutions to real-life problems, e.g. balancing the
exploitation of renewable resources [8], autonomous swarm
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shepherding [9], fault detection [10], exploration in extreme
environments [11, 12] and coordination control of multiple
autonomous vehicles [13].

To achieve the collective behaviours and to develop
collective mechanisms, a large and growing body of liter-
ature has investigated modelling and designing the swarm
systems. Considerable works have been undertaken from
various angles such as distribution [14], communication
[15], sensing [16] and coordination [17]. As a significant
aspect of swarm systems, cooperation strategy particularly
plays an important role in successfully achieving flocking
behaviour. Hence, different strategies have been developed
based on various disciplines to present collective motion as
a connected swarm behaviour, for example, in the study con-
ducted by He et al. [18], disk graph and Delaunay graph
methods were used to present connectivity with various dis-
tances. In [14], mean-field game model was presented by
partial differential equations to describe the swarm dynam-
ics based on state and distributions. The performed study
by Thrun et al. [19] proposed a cluster analysis that used
the projection method based on the topographic map. These
strategies can be divided, on the basis of its framework, into
two main categories: homogeneous and heterogeneous [20].
A heterogeneous group of swarm robots contains various
types of robots with different roles and responsibilities,
while in a homogeneous swarm, every individual follows
the same strategy to achieve the same task, hence, there are
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no behavioural or physical differences between the individ-
uals in a swarm [21]. A heterogeneous model is used in this
research study to achieve centralised decision making for a
swarm of robots.

Bio- and nature-inspired flocking mechanisms were
investigated in many studies, e.g. Reynolds flocking
model [22] is one of the fundamental swarm flocking pre-
sentations. In another study [23], a leaderless mechanism
was proposed, in which robots estimated swarm’s centre-
of-mass using neighbouring robots detection within their
sensing radius. Campo et al. [24] proposed a target estima-
tion method based on a negotiation within the swarm during
a flocking scenario. The study by Turgut et al. [25] set up
a self-organised flocking using real mobile robots which
were locally connected using wireless network. In addition,
a collective motion with combination of aggregation and
velocity alignment was proposed [26]. In [27], collective
motion was investigated under two conditions that are 1)
agents follow their own polarity and ii) agents interact with
each other. Moreover, a flocking mechanisms was proposed
in [28] using magnitude-dependent motion control to steer
a swarm. In a recent study, Na et al. [29] presented a bio-
inspired collective migration of a swarm that were steered
by movement of an external cue embodied in an artificial
pheromone. In a seminal study in collective motion, Fer-
rante et al. [30] proposed a flocking method based on active
elastic sheet (AES), which is a self-propelled mechanism
where swarm particles can successfully achieve collective
motions. The aforementioned studies are examples of col-
lective motion mechanisms which were mainly inspired by
nature.

On the other hand, theoretical studies based on multi-
agent systems have been conducted for several decades. In
[31], a consensus algorithm was developed for multi-agent
systems under fixed and switching communication topolo-
gies. The synchronisation of the agents can be achieved via
only local information. In [32], a robust consensus control
scheme was designed for voltage and frequency restoration
of islanded microgrids, where the effects of model uncer-
tainty, parameter variation and unmodelled dynamics were
considered. Time-varying delays were also considered in
the leader-following consensus problems as shown in [33],
where a condition to reach consensus and an estimation of
the convergence rate were given. Based on the progress of
the research in the area of multi-agent consensus control,
various formation control techniques have been developed
for swarm systems to handle more practical applications. In
[34], formation tracking of networked mobile robots using
bearing measurements was proposed. In another work [35],
a two-layer formation-containment coordination scheme
was proposed and an application to artificial satellites for-
mation flying was shown. In [17], robust formation coordi-
nation of robot swarms was analyzed, where the nonlinear
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dynamics and unknown disturbances were considered in the
coordination protocol design. As shown in the aforemen-
tioned literature, multi-agent systems play an important
role in coordinating robots to accomplish the desired goals
especially in real-world applications.

Typically, nature-inspired swarm strategies are simple
but offer less precise swarm behaviour. In contrast, multi-
agent systems theory generally provide more accurate
control for a swarm, but has a higher computational cost. A
well-designed heterogeneous swarm system, such as leader-
follower mechanism, is able to combine the advantages of
nature-inspired swarm systems with multi-agent systems
theory. Using a leader-follower mechanism, where a leader
acts as a local central controller and followers act as a
swarm system dealing with the target task e.g. weeding,
will provide great opportunity for swarm systems in real-
world applications. This means, a leader, an expensive
robot equipped with various communication and sensing
tools, plays a base transceiver stations role in a swarm,
while followers are low-cost individuals that receive high
level commands, e.g. steering the swarm, from the leader.
However, one of the common challenges in the leader-
follower mechanism is distributing tasks. Providing a
model to allocate efficient tasks for leader and follows is
crucial, which may largely decrease the overall mission
completion time and energy costs and even further lower
the requirement for hardware. Besides, how to improve
the robustness of a swarm is also a challenge in swarm
robotics [20]. An ideal swarm mechanism should be able
to provide a solution to ensure the majority of robots
achieve the goal even when a small amount of robot get
lost.

In this paper, we proposed a leader-follower mecha-
nism combining a low-cost heterogeneous swarm (for the
flock) and a leader coordination control. The proposed
leader-follower mechanism is tailored for the real-world
applications of swarm robotics, to reduce the cost of imple-
mentation by deploying a small number of costly robots that
are coordinating the entire swarm system. To combine hard-
ware and collective control algorithms, the motion model
was applied to a swarm of simulated robots by carefully
considering the physical properties and hardware limitations
of the real robots. Simulated experiments were performed to
analyse the group performance of the swarm flocking with
the leader-follower mechanism. Followed by these qualita-
tive experiments, the group behaviours were evaluated using
two metrics, i.e. the average distance between the robots and
the swarm alignment in the swarm. The results were anal-
ysed to identify the effects of the chosen factors including
time, population size, force and desired distance. This infor-
mation will potentially help follow-up studies to address
limitations of implementation using real swarm robots in
real-world applications.
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The rest of this paper was organised as follow. In
Section 2, we introduced the swarm mechanism and leader
motion. Following that, in Section 3, we explained the
robotic platform and experimental setup. In Section 4, we
discussed the experimental results and analysed effects of
different factors in collective swarm performance. Finally,
in Section 5, we drew conclusions and discussed the future
research direction in which the swarm robots might be
involved.

2 Flocking method

The proposed flocking method, including the swarm
controller and leader’s coordination control, is presented in
this section. Apart from the leader, every robot follows the
swarm mechanism.

2.1 Swarm mechanism

In the swarm mechanism, we designed a strategy to shape a
swarm and build a network, so that the robots interact with
each other. Meanwhile, we proposed a solution for obstacle
avoidance which is a critical topic in application of swarm
robotics in real-world scenarios. As a result, the swarm not
only can perform the collective motion in an open space, but
also is able to avoid obstacles and maintain the group after
the obstacle avoidance task. First, we described the system
as Egs. 1 and 2 which show the descrlptlon of each robot on
position, pl, and robot rotation, ¢;. The movement of each
robot is controlled by two different forces: i) the repulsive
force, ﬁo, and ii) the collective force, ﬁi , described as Egs. 3
and 4.

pi = [Fy+a(F, + D,&) - il -y (1)
$i = [Fy+B(Fi + D& - ™, )

where coefficients & and P are related to linear speed and
angular speed of the collective movement. 7; and it are
unit vectors, where #; has the same direction as the heading
of the robot, while riiL is perpendicular to the heading
direction. D, is the noise value in the process of detecting
distances between robots. ér is a unit vector with a random
direction, so that noise is applied in an arbitrary direction.
¢; is the angle which the robot i is expected to rotate. A
positive value of ¢; determines a clockwise rotation and a
negative value is a counterclockwise rotation. 130 and ﬁi are
described as follows
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130 presents the force which obstacles exert to the robot
and the repulsive force I*:o is related to the differences
between ||7,|| and I,. 7, is the vector from the centre of the
robot to the obstacle o, so ||/, is the distance between the
robot and obstacle o. [, is the threshold of avoiding action.
n, is the total number of obstacles. Obviously, the repulsive
force is zero when the distance between robot and obstacle
equals to the threshold. The force increases as the robot
move close to the obstacle.

The repulsive force is only applied when the robot near
an obstacle, which is shown in Algorithm 1. The repulsive
force aims to avoid obstacles for each robot on their path,
while the collective force is used to build a network among
robots.

Algorithm 1 Obstacle avoidance.

Initialisation of N; k; 1;;; 1,
while true do
for o < 1ton, do
if 7, > 0.4 then
| ﬁo =0;
else
’ I‘:0= the value of Eq. 3;
end

end
end

Similarly, the vectorial summation of the difference
between neighbouring distance and desired distance is
presented as a collective force, Ij}, shown in Eq. 4. n,, is the
number of neighbours. 7;; is the neighbouring robot which
is a vector from the centre of the robot i to its neighbour ;.
Therefore, ||F; ;| is the distance between robot i and j. [;; is
the desired distance between two neighbouring robots. The
difference between the absolute value of 7;; and [;; is the
error of collective motion. % is a parameter which acts like
a spring constant, involving the amount of force that robots
generate according to the collective distances.

Remark 1 In some relevant works, obstacle avoidance was
considered in the leader-following formation control design.
For example, in [36], a leader robot travelled across an
area with obstacle avoidance and a follower robot followed
the exact same trajectory to avoid these obstacles. Bluetooth
technology was used for communication between the two
robots. In another study conducted by Lee et al. [37], three
boundary layers were applied to achieve a local leader-
follower method. Different layers were prioritised to keep
the shape of the group of robots and avoid the collision
according to the distance between robots and obstacles.
Apart from the leader robot, each robot followed its front
neighbour. In this case, the decision of each individual robot
completely relies on one neighbour robot and the swarm
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acts as a chain. Gain control and corrective control were
adopted to set the trajectory for obstacle avoidance in [38],
where Wu et al. designed a formation tracking task using
one leader robot and two follower robots in the simulation.
However, in the aforementioned works, one disconnection
between two robots may result in the loss of the rest of
the robots in the chain. Besides, as all followers require
the information from the leader, the communication costs
are high when a practical swarm has a large size and some
robots are far away from the leader. Different from these
works, in this paper, followers make decisions only based on
their local neighbours within the sensing range. Therefore,
if a small amount of robots lose connections, the majority of
the swarm are still able to achieve the goal.

2.2 Leader motion

In this section, the motion of leader is analysed. It is
assumed that the target position of the swarm can only be
detected by the leader. In order to navigate all the followers
to the goal, we designed the following tracking method for
the leader based on the relative position information.

Consider that many robotic systems (e.g. mobile robots)
can be transformed into double integrator dynamics via
input-output feedback linearisation techniques [39, 40]. In
this work, the dynamics of the leader robot can be described
by the following equations

p@) =v(), (5)
v(t) = u(1), (6)
where p(t) and v(¢) represent the position and velocity of
the robot respectively. u(¢) is the control input signal to be

designed. This dynamic model can also be described by the
following state-space form

x(t) = Ax(1) + Bu(1), (N

101 10 | p®
whereA—I:OO:|,B—I:li|andx(t)—[v(t)i|.

We assume that the target will either remain static (i.e.,
a fixed position in the environment) or move with constant
speed, hence it can be model by the following equations

rp(t) =ry(t), 8
(@) =0, )

where r), and r, are the position and velocity of the target.
The state-space model of the target can be given as follows

F(t) = Ar(2), (10)

where r(¢) = |::»pg; i|
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In order to track the target precisely during the mission,
a suboptimal control law is designed for the leader. Let the
state tracking error

e(t)y =x(t) —r() (1)

and the initial tracking error e(0) = ep. Since the pair
(A, B) is stabilisable, for given weighting constants Q > 0
and R > 0, there exists a positive definite P satisfying

ATP+PA—PBR'BTP+0 <0, (12)
eOTPeo <Y, (13)

where y > 0 is a positive gain. Motivated by [41, 42], we
can then design the following feedback control protocol for
the leader

u(t) = —R'BT Pe(r). (14)

Substituting Eqs. 7 and 14 into the derivative of Eq. 11,
the expressions for the closed-loop system dynamics can be
obtained as

é(t) = (A — BR™'BT P)e(1), (15)
Since P satisfies Eq. 12, we have
(A-BR'B"P)'P +xP(A— BR™'BTP)

+0+ PBR!'BTP <0, (16)

which implies that A — BR™!BT P is Hurwitz, ie.,
the closed-loop system Eq. 15 is asymptotically stable.
Therefore, the corresponding cost is finite and given by

0
sz e’ (Q+ PBR™'BT P)e dt. 17)
0

Considering that Eq. 13 holds, we can easily find that J < y
is satisfied, which means the suboptimality of the target
tracking algorithm can be guaranteed.

Therefore, by using the control law Eq. 14, the leader
robot can track the goal position within finite time and
the performance of the closed-loop system can be tuned
by adjusting Q, R and y respectively. This coordination
algorithm of the leader lays the foundation of steering the
whole robot swarm to the desired target position.

Algorithm 2 Multiple goals tracking algorithm.

//initialisation
Goaly =0
while |le(?)]| < 0.1 do

if Condition is met & Goaly < Goaly,, then
| Goaly < Goaly + 1

end
end

With Algorithm 2, the swarm is able to follow the leader
and tracks each goal in order. As shown in Algorithm 2,
when the leader reaches a goal, the index of the current
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goal increases one and the leader starts to reach the next
destination until it reaches the final goal.

3 Experimental setup
3.1 General foundation

In this work, Webots [43] is chosen as the simulation
platform. It provides a realistic simulation to design a
customised environments. The software includes libraries
for various robots and objects, which are provided in
toolboxes. As a professional robotic platform, Webots
has integrated cross-compilation systems allowing users to
compile and upload the controllers to real-life robots with
minimum modification, which facilitates the application for
future work.

In Webots software, we used a number of TurtleBot [44]
robots to investigate the proposed leader-follower mecha-
nism. TurtleBot is an affordable, open-source mobile robot
with excellent expandability. The miniature size of Turtle-
Bot, 138 mmx178 mm, is ideal for research in swarm
robotics. Created in 2010, TurtleBot is a popular platform
and has been utilised in many swarm and multi robotic
studies [45, 46]. As a mobile robot, TurtleBot is actuated
by two differential wheels. Its maximum forward velocity
is 0.22 m/s and maximum angular velocity is 2.84 rad/s.
TurtleBot is equipped with a netbook, sensors and a gyro-
scope. 360 laser distance sensor and IMU are suitable
equipment for the robotic tasks, such as mapping and
localisation. With maximum payload of 15 kg, TurtleBot
is able to be adopted for various tasks in the real world
scenarios.

3.2 Swarm robotics experiments

In this section, we aimed to apply the aforementioned
flocking mechanism for steering a swarm of mobile robots.
In initialisation step at the beginning of each experiment,
the orientation of each robot was randomly defined,
0 € [—m, ], and the inter-robot distances with their
neighbours were set within 0.3 m. In order to test the
collective behaviour with different kinds of initial forms,
we run experiments with four robots in different initialised
shapes. In Fig. 1, a and c are the two different initialisation
forms. (b) and (c) are the form of the swarm (a) and (c)
correspondingly after a while (f < 10 s). In particular
examples, both of the experiments took less than 10 s
to achieve steady state. Since we evaluated the group
performance of the teams’ steady state, the initialised form
does not play an important role in our experiments.

To apply the swarm mechanism, each robot has an
individual controller which is implemented by its own

(c) (d)

Fig. 1 Examples of preliminary tests for the robot group in different
scenarios: a and b are the screenshots for the swarm with initialisation
in a square. ¢ and d are the screenshots for the swarm with initialisation
in a parallelogram

microcontroller. According to the swarm mechanism, there
are two forces that mainly affect the collective motion. One
is the collective force, I?l-, and the other is the repulsive
force, ﬁo. The collective force depends on the relative
positions of the neighbours, which can be calculated by
summing the errors between neighbouring vector, r;;, and
desired distances, /;;. Figure 2 shows an example of the
initialisation of 7 robots in a swarm. Figure 2b illustrates
ﬁi between robots. Apart from the leader, all robots
are exerted forces from their neighbours. Compared with
Fig. 2a, It is clear that forces have contributed to creating
the desired distances between robots and the interaction
network structure is more obvious.

Dot products are used to calculate the scalar projection
of the forces onto a horizontal unit vector 7; and a
vertical unit vector nAiJ‘ in Egs. 1 and 2. In our work, the
angles between 7; and forces depend on the distribution of
surrounding neighbours in each robot’s coordinate system.
The component of the total force acting in the horizontal
direction was calculated by summation of the component
of all forces in 7; direction as presented in Eq. 4. The
component of the total force in the vertical direction was
calculated in the same way using 72 ,-L

The repulsive force is calculated in a similar way. Prior to
applying the repulsive force, the coordinate transformation
was adopted because F, is in the global coordinate frame,
while the set of Ij", controller on the TurtleBot is in the robot
coordinate frame. Collective forces have weight parameters
k which influence the forces that are applied to the robot,
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Fig.2 aInitialisation of swarm; every robot is marked in a circle with
a triangle. The triangle points along the robot’s heading direction. The
blue circle indicates the leader. b Force between robots; if there is a
force between two connected robots, a green force arrow is used to
represent the direction of the forces. ¢ Leader-follower tracking; after
adjustment between robots, the swarm is heading to the first goal by
following the leader. The blue curve shows the trajectory of the leader.
d Group motion; the swarm collectively move to multiple goals. The
blue curve is the trajectory of the leader

for example, an increase in k leads to a bigger force to pull
the swarm toward a direction and vice versa.

With these force information, the controllers start to
calculate total forces and correspondingly change the robot
kinematics. The transformation from force to the robot’s
kinematics is described by the following equations. 17"1 and
F, o are related to forward velocity, ¥;, and angular velocity,
w;, which are two variables to describe the kinematics of
the robot.

I = m | F; + Fell (18)
w; =nZ(F; + Fy), (19)

where parameters m and n are tuned empirically to make
sure each robot rapidly adjust its speed and heading
direction, which is the fundamental of group behaviour.

The transformation between the goal position and the
angular velocity of wheels can be derived as:

|:||ﬁi||:| _ [5 5 } [wr} 20)
w ) =5 =5 )

Positions and orientations of the robots are recorded at
each sampling time. Figure 2¢ and d shows the trajectory of
the leader achieving the first and second goals, respectively,
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during the experiments. The swarm is able to follow the
leader in achieving multiple goals.

3.3 Leader test

In this work, we assume that the target position of the whole
robot swarm is only assigned to the leader, so it is a partially
informed heterogeneous system that only leader knows
about the target. Based on the relative position information
between the target and the leader, the position tracking error
e(t) can be detected by the leader at each time instant, ¢.
Then, by using proposed optimal control law Eq. 14, the
leader will reach the desired location autonomously within
finite time. Note that the tracking speed of the leader can be
adjusted by tuning Q, R and y in solving Egs. 12 and 13,
respectively. However, due to the physical constraints of the
motors in TurtleBot, we cannot select arbitrary large tuning
parameters. Besides, in order to generate a smooth trajectory
for the leader, we should also set a proper maximum angular
velocity in the feedback linearisation controller, which is
implemented in the robot’s low-level control design. Since
the leader robot can be observed and tracked by at least
one of the follower, when the leader is moving towards
the target position, the connected followers can be steered
accordingly. This guarantees the completion of the flocking
tasks.

3.4 Metrics

The expected flocking performance is the group of robots
collectively move along the track of the leader. To evaluate
the group motion, we used two metrics which have
commonly used in swarm robotics area [25, 29, 47, 48]: d;
and &. These two metrics were calculated and recorded at
each sampling time during every experiment.

1. d is the average distance of the swarm, which is
calculated with the following equation. By comparing
the average distance of different groups, coherency
and density can be evaluated. Typically, steady and
relatively small values mean that the swarm has
expected coherency.

N—1 N
233 IFE
i=1 j=1
dy= ———, 21
= N T @1)

where N is the number of robots in the swarm and ||7; il
is the distance between robots i and j.

2. Apart from distance, swarm alignment is also critical
measurements for evaluating the alignment of a group.
We calculate swarm alignment as Eq. 22 in this paper.
swarm alignment, £, indicates the agreement of the
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robots’ heading, which is related to the vectorial sum of
each individual’s rotation, shown as

N
1Yl
i=1

E:Ta

(22)
where 7; is a unit vector along with the heading of
robot i. £ is between 0 and 1. Bigger value shows the
better agreement of the robots’ heading, in contrast,
smaller one demonstrates a more disswarm alignmented
heading performance.

Since the robots were initialised at random positions with
randomly selected orientations, the values of the metrics are
different between experiments at the beginning, t = 0 s.

In the following section, the results of experiments
are presented and investigated to compare the impact
of different parameters in the mechanism, Eq. 4. The
parameters are related to time, population size (N €
{4,7, 10} robots), force (k € {0.5,1,1.5}) and desired
distance (/;j € {0.25,0.3,0.35} m) between the robots.
Each set of experiments has the same parameter setting and
was repeated 10 times.

Fig.3 A randomly selected example of 7 robots avoiding an obstacle
while performing swarm flocking. The robot marked with yellow
colour is the robot that detected an obstacle

4 Results & discussion

To address the influence of factors including time, popula-
tion size, desired distance and force, various experiments
were designed with independent object factors and fixed
irrelevant variables. Each set of experiments was repeated
10 times to generate the following results.

Figure 3 is a randomly selected experiment where a
group of robots are avoiding an obstacle. When a robot
(marked with yellow circle) detected the obstacle which is
on its way to the goal, the robot tried to change its heading
direction because of the force from the obstacle. However,
there were a few neighbours on its changing direction.
Owning to the force from neighbours, it is obvious the robot
was waiting from 7 =2 s to f = 5 s. The robot started to chase
the swarm from ¢ = 5 s and ended up with joining the swarm
at around 15 s.

4.1 Effects of time

To check the change of metrics during experiments, we
implemented an experiment which corresponds to the
Fig. 2c. Force parameter and desired distance were set as
k=1,1;; =03 min a swarm with N =7 robots.

Figure 4 shows the results of d; and & during 22 s.
After initialisation, the robots adjusted to keep appropriate
distances from their neighbours in the first 10 s, while the
leader headed to the goal from the beginning. From 7= 10 s
tot = 16 s, the swarm travelled to the goal by following the
leader. As shown in Fig. 2c, trajectory of the leader robot

~——
E 0‘4 /N
wv)
- 0.38
0.36
034
0.32
1.2
1
]
0.8 F
wr 06

04

0 2 4 6 8 10 12 14 16 18 20
Time [s]

Fig. 4 Results of distance and swarm alignment during experiments
with k = 1, [;; = 0.3 with N = 7 robots within ¢t = 21 s. The shaded
area indicts the distribution of results and lines show the median of
results
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was almost a straight line. Both average distance d; and
swarm alignment & achieved and held steadily as expected
value in this period. The swarm arrived the goal around ¢ =
16 s. The leader started to turn and move to the next goal,
which resulted in the slight change of both metrics.

Based on the upper graph of Fig. 4, the maximum
and minimum dg (maximum fluctuation) occurred at the
beginning of the experiment, with approximately 0.44 m
and 0.375 m. Then, the average distance maintained around
0.41 m.

Similarly, swarm alignment & changed dramatically at
the first 10 s, with minimum value 0.02. During the
travelling period, the swarm alignment almost stayed at
1, which indicates the swarm was able to maintain the
coherency within this period of time. Turning triggers the
adjustment between robots, which is the reason of the slight
fluctuation after =16 s.

4.2 Effects of population

With k¥ = 1 and [;; = 0.3, experiments were
conducted using various population sizes N € {4,7, 10}
robots. Results were collected during the period when all
experiments reach steady state, so the length of the data set
might different among Sections 4.2, 4.3 and 4.4. Figure 5
shows the obtained results in different populations.

As shown in Fig. 5a, d; rises as the population increases.
The results of average distance were more consistent (less
fluctuations) for the groups with N=4 and N=7 robots
than N=10 robots. The results with N € {4, 7} robots
were mainly distributed around d;=0.33 m and d;=0.41 m,
respectively. There was enormous fluctuation for the results
obtained with N=10 robots, which were distributed between
ds=0.2 m and d;=1.0 m with median of d,=0.8 m.
A similar behaviour in relationship between population

1.00
1.0
0.98
0.9
0.96
0.8 0.94
— 0.7 0.92
E
w 06 M 0.90
o©
0.88
0.5
0.86
0.4 —
0.84
L 0.82
0.2 = 0.80 ale.
4 robots 7 robots 10 robots 4 robots 7 robots 10 robots
Population Population
(a) (b)

Fig. 5 Results of average distance and swarm alignment during
experiments with k = 1, [;; = 0.3 using N € {4, 7, 10} robots. Blue,
orange and grey boxes are for 4, 7 and 10 robots, respectively
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size and coherency of the swarm was also reported
in [12].

In terms of the swarm alignment &, increasing popu-
lation triggers worse alignment. Similar results were also
reported in [25]. The results from experiments with N=7
robots showed the tightest distribution, with approximately
£=0.92. Experiments with N=10 robots have the worst
group performance among these experiments and spread
out more dramatically than the other two settings, with the
median value around £=0.89. The obtained results from
experiments with N=4 robots has the best distribution, with
0.94 and nearly 1 as the median value and maximum value
respectively.

4.3 Effects of force

Figure 6 reveals the average distance and swarm alignment
with [;; = 0.3, N=7 robots and varying force parameters
k € {0.5, 1, 1.5}. According to Eq. 4, k is the parameter that
relies on the strength of force 17“,-.

Compared the distribution of desired distance in Fig. 6a,
the swarm mechanism with k = 1 has the best coherency
among the experiments. The average distance changed
between 0.47 m to 0.58 m. It can be clearly observed that
mechanism with k£ = 0.5 yields better coherency than the
one with k = 1.5, but has a greater chance to change. It
means the swarm with k = 0.5 tends to change the form
compared with the other one.

Considering the results of Fig. 6b, all experiments have
chance to reach a bigger value. The mechanism with k =
1.5 has greater variability in changing orientation, which
leads to worse swarm alignment of the swarm. In contrast,
k = 0.5 contributes the best swarm alignment among
the experiments, with less dispersion of the data and the
relatively big swarm alignment value.

0.95 1.00 =
0.90 0.95
0.85 ? 0.90
0.80 0.85
. 075 0.80
£
= 070 M~ 0.75
"
3
0.65 0.70
0.60 0.65
0.55 0.60
0.50 0.55
045 0.50
05 1 15 05 1 15
k k
(a) (b)

Fig. 6 Results of average distance and swarm alignment during
experiments with /;; = 0.3, N = 7 withk € {0.5, 1, 1.5}. Blue, orange
and grey boxes are for k = 0.5, 1 and 1.5, respectively
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4.4 Effects of desired distance

Desired distance is a parameter which involves with the
expected distance between robots and their neighbours.
Robots adjust their positions based on the difference
between the estimated neighbouring distance and the
expected distance. The impacts of different /;; are illustrated
in Fig. 7.

Shown in Fig. 7a, an increase in /;; increases the average
distance as expected. In case of [;; = 0.25, it increases the
risk of dispersive distribution of average distance, though
it has a greater chance to reach the minimum value. The
average distance of swarm with /;; = 0.3 maintains around
0.41 m, which is enough for followers to track the leader.
With 0.455 m, the coherency of the swarm using [;; =
0.35 is the worst among the experiments, namely the larger
desired distance might hinder the collective dynamics.

According to Fig. 7b, the swarm alignment has the
chance to reach the maximum value with various settings
of desired distances. A clear indication of the case with
lij = 0.25 shows the observed results from the swarm
performance spread out dramatically. In case of /;; = 0.35,
the swarm provided the best swarm alignment, although the
results had greater distribution in comparison with other two
settings.

The aforementioned analysis demonstrated the impact
of population, force and desired distance on the group
performance and also provided a guidance to tune the
relevant parameters based on the desired swarm behaviour.
According to the results and discussions given in this
section, it can be concluded that the collision-free flocking
task can be achieved by the proposed mechanism and
the performance can also be potentially adjusted to fulfill
the requirements of real-world applications. In terms of

0.50 1.0
0.48 0.9 T
0.44
0.7
., 042
[3 0.6
— 0.40 S M
8 0.5
0.38
0.4
0.36
034 0.3
0.32 0.2
0.30 0.1

0.25 B 0.35 0.25 0.3 0.35
lij [m] lij [m]
(a) (b)

Fig. 7 Results of average distance and swarm alignment during
experiments with N = 7 robots and k = 1 with [;; €
{0.25, 0.3, 0.35} m. Blue, orange and grey boxes are for k = 0.25, 0.3
and 0.35, respectively

improving the swarm performance, methods such as neural
collaborative filtering and fuzzy clustering algorithm [49]
could be exploited to achieve group flocking behaviour of
heterogeneous robot swarms.

4.5 Discussion

Previous work by Ferrante et al. [30] has established that the
swarm collectively move to a goal direction in open spaces
without considering the obstacles. On the contrary, the
mechanism we proposed here can deal with such obstacles
in the environment. The swarm is able to travel along the
expected track and avoid obstacles. Even robots spread
out when avoiding collision, the swarm can rebuild the
network and continue to drive to the goal. Compared with a
homogeneous mechanism, the experimental work presented
here provided a solution which has less requirement for
robot’s hardware especially in terms of communication and
storage. In previous work [50], apart from obtaining data
from neighbouring robots, each robot in the swarm must
know the location of the goal. On the contrary, in this
study, only the leader robot is assumed to know the goal
information and all follower robots just need to use the local
information from the neighbours. In this case, the proposed
solution can decrease the communication costs of individual
robots and further make the swarm more affordable.

It is now well established from a seminal work
by Sahin [51], each robot in a swarm system makes
decisions only based on its neighbours’ states and only
interacts with its direct neighbours within a specific
range, sensing radius, due to the limitations of real
robots’ hardware in practical scenarios. Therefore, direct
communication in a swarm system without having an
extra observer, central controller, is one of the challenges
of implementing swarm scenarios using real mobile
robots [20].

Some research studies [13, 29, 52, 53] relied on the
acquisition of the location of each robot from an external
observer, whereas some [30, 54] regarded each robot as
an abstract particle without considering physical properties
e.g. weight, size, motors speed and sensing range. Such
approaches, however, can not realistically address the
situation in which the group operation is influenced by
the physical and hardware design constraints. In this
work, the swarm is not controlled by a central controller.
Every follower makes decisions based on its neighbours
and surrounding obstacles, while the leader only requires
the information of the goal and surrounding obstacles.
Compared to those aforementioned works, the mechanism
we proposed here is more realistic for the application in real
robots.

In terms of the limitation of this work, we did not
considered optimisation of the parameters in Eqgs. 1-4.
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Hence, using optimisation algorithms, e.g. [55, 56], will
benefit the choice of these parameters.

5 Conclusion

The main goal of this study was to design a generalised
swarm mechanism which has the ability to adapt to
a complex environment. Using a leader and a number
of followers, the swarm network successfully finished
the designed tasks, which has gone some way towards
enhancing our understanding of the swarm application in
the real world, such as, collective mapping and collective
sensing. Compared with the previous work, one of the most
obvious improvement to emerge from this study is that the
swarm network has less requirement for power and storage.
The analysis of factors undertaken here can be considered
the first step from an abstract mechanism to the progression
with real robots. In the future, a greater focus on application
in real robots could produce findings that account more for
precision agriculture, collective sensing and so on.

Acknowledgements This work was supported by the UK EPSRC
RAIN (EP/R026084/1), RNE (EP/P01366X/1) and EU Horizon 2020
Robocoenosis projects (grant number §99520).

Funding Open access funding provided by University of Manchester.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Camazine S, Deneubourg JL, Franks NR, Sneyd J, Bonabeau
E, Theraula G (2003) Self-organization in biological systems.
Princeton University Press, Princeton

2. Hein AM, Gil MA, Twomey CR, Couzin ID, Levin SA (2018)
Conserved behavioral circuits govern high-speed decision-making
in wild fish shoals. Proc Nat Acad Sci 115(48):12,224-12,228

3. Flack A, Nagy M, Fiedler W, Couzin ID, Wikelski M (2018) From
local collective behavior to global migratory patterns in white
storks. Science 360(6391):911-914

4. Torney CJ, Hopcraft JGC, Morrison TA, Couzin ID, Levin SA
(2018) From single steps to mass migration: the problem of scale
in the movement ecology of the serengeti wildebeest. Philosop
Trans R Soc B Biol Sci 373(1746):20170,012

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Kaiser A, Snezhko A, Aranson IS (2017) Flocking ferromagnetic

colloids. Sci Adv 3(2):e1601,469

. Hu J, Bhowmick P, Jang I, Arvin F, Lanzon A (2021) A decen-

tralized cluster formation containment framework for multirobot
systems. IEEE Trans Robot. https://doi.org/10.1109/TR0O.2021.
3071615

. Schranz M, Di Caro GA, Schmickl T, Elmenreich W, Arvin F,

Sekercioglu A, Sende M (2021) Swarm intelligence and cyber-
physical systems: concepts, challenges and future trends. Swarm
Evolut Comput 60(100):762

. Miletitch R, Dorigo M, Trianni V (2018) Balancing exploitation of

renewable resources by a robot swarm. Swarm Intell 12(4):307-
326

. Hu J, Turgut AE, Krajnik T, Lennox B, Arvin F (2020)

Occlusion-based coordination protocol design for autonomous
robotic shepherding tasks. IEEE Trans Cognitive Develop Syst.
https://doi.org/10.1109/TCDS.2020.3018549

Tarapore D, Timmis J, Christensen AL (2019) Fault detection in
a swarm of physical robots based on behavioral outlier detection.
IEEE Trans Robot 35(6):1516-1522

Hu J, Niu H, Carrasco J, Lennox B, Arvin F (2020) Voronoi-based
multi-robot autonomous exploration in unknown environments
via deep reinforcement learning. IEEE Trans Vehic Technol
69(12):14,413-14,423

Amjadi AS, Raoufi M, Turgut AE, Broughton G, Krajnik T, Arvin
F (2019) Cooperative pollution source localization and cleanup
with a bio-inspired swarm robot aggregation. arXiv:1907.09585
Hu J, Bhowmick P, Arvin F, Lanzon A, Lennox B (2020)
Cooperative control of heterogeneous connected vehicle platoons:
an adaptive leader-following approach. IEEE Robot Autom Lett
5(2):977-984

Grover P, Bakshi K, Theodorou EA (2018) A mean-field game
model for homogeneous flocking. Chaos An Interdiscipli J
Nonlinear Sci 28(6):061,103

Wong WK, Ye S, Liu H, Wang Y (2020) Effective mobile target
searching using robots. Mob Netw Appl 1-17

Liu Z, West C, Lennox B, Arvin F (2020) Local bearing estimation
for a swarm of low-cost miniature robots. Sensors 20(11)

Hu J, Turgut AE, Lennox B, Arvin F (2021) Robust forma-
tion coordination of robot swarms with nonlinear dynamics and
unknown disturbances: Design and experiments. IEEE Transac-
tions on Circuits and Systems II, Express Briefs. https://doi.org/
10.1109/TCSI1.2021.3074705

He C, Feng Z, Ren Z (2018) A flocking algorithm for multi-
agent systems with connectivity preservation under hybrid metric-
topological interactions. PloS one 13(2):e0192,987

Thrun MC (2018) Projection-based clustering through self-
organization and swarm intelligence: combining cluster analysis
with the visualization of high-dimensional data. Springer, Berlin
Dorigo M, Theraulaz G, Trianni V (2020) Reflections on the
future of swarm robotics. Sci Robot 5(49)

Wu K, Hu J, Lennox B, Arvin F (2021) SDP-based robust
formation-containment coordination of swarm robotic systems
with input saturation. J Intell Robot Syst 102(12)

Reynolds CW (1987) Flocks, herds and schools: a distributed
behavioral model. In: Proceedings of the 14th annual conference
on Computer graphics and interactive techniques, pp 25-34
Hayes AT, Dormiani-Tabatabaei P (2002) Self-organized flocking
with agent failure: Off-line optimization and demonstration with
real robots. In: IEEE International conference on robotics and
automation, vol 4, pp 3900-3905

Campo A, Nouyan S, Birattari M, Grofl R, Dorigo M (2006)
Negotiation of goal direction for cooperative transport. In:
International workshop on ant colony optimization and swarm
intelligence. Springer, Berlin, pp 191-202


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TRO.2021.3071615
https://doi.org/10.1109/TRO.2021.3071615
https://doi.org/10.1109/TCDS.2020.3018549
http://arxiv.org/abs/1907.09585
https://doi.org/10.1109/TCSII.2021.3074705
https://doi.org/10.1109/TCSII.2021.3074705

Mobile Netw Appl (2021) 26:2461-2471

2471

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Turgut AE, Celikkanat H, Gokge F, Sahin E (2008) Self-organized
flocking in mobile robot swarms. Swarm Intell 2(2-4):97-120

Li B, Wu ZX, Guan JY (2019) Collective motion patterns of self-
propelled agents with both velocity alignment and aggregation
interactions. Phys Rev E 99(2):022,609

Hiraiwa T (2019) Two types of exclusion interactions for
self-propelled objects and collective motion induced by their
combination. Phys Rev E 99(1):012,614

Ferrante E, Turgut AE, Huepe C, Stranieri A, Pinciroli C, Dorigo
M (2012) Self-organized flocking with a mobile robot swarm: a
novel motion control method. Adapt Behav 20(6):460—477

Na S, Qiu Y, Turgut AE, Ulrich J, Krajnik T, Yue S, Lennox
B, Arvin F (2020) Bio-inspired artificial pheromone system for
swarm robotics applications. Adaptive Behav 1059712320918936
Ferrante E, Turgut AE, Dorigo M, Huepe C (2013) Collective
motion dynamics of active solids and active crystals. New J Phys
15(9):095,011

Ni W, Cheng D (2010) Leader-following consensus of multi-agent
systems under fixed and switching topologies. Syst Control Lett
59(3-4):209-217

Hu J, Bhowmick P (2020) A consensus-based robust secondary
voltage and frequency control scheme for islanded microgrids. Int
J Electric Power Energ Syst 116(105):575

Zhu W, Cheng D (2010) Leader-following consensus of second-
order agents with multiple time-varying delays. Automatica
46(12):1994-1999

Wu K, Hu J, Lennox B, Arvin F (2021) Finite-time bearing-only
formation tracking of heterogeneous mobile robots with collision
avoidance. IEEE Transactions on Circuits and Systems II, Express
Briefs. https://doi.org/10.1109/TCSI1.2021.3066555

Hu J, Bhowmick P, Lanzon A (2020) Two-layer distributed
formation-containment control strategy for linear swarm systems:
Algorithm and experiments. Int J Robust Nonlinear Control
30(16):6433-6453

Bhavana T, Nithya M, Rajesh M (2017) Leader-follower co-
ordination of multiple robots with obstacle avoidance. In: 2017
International conference on smart technologies for smart nation
(smarttechcon). IEEE, pp 613-617

Lee G, Chwa D (2018) Decentralized behavior-based formation
control of multiple robots considering obstacle avoidance. Intel
Serv Robot 11(1):127-138

Wu X, Wang S, Xing M (2018) Observer-based leader-following
formation control for multi-robot with obstacle avoidance. IEEE
Access 7:14,791-14,798

Ren W, Atkins E (2007) Distributed multi-vehicle coordinated
control via local information exchange. Int J Robust Nonlinear
Control 17(10-11):1002-1033

Hu J, Bhowmick P, Lanzon A (2020) Distributed adaptive time-
varying group formation tracking for multi-agent systems with
multiple leaders on directed graphs. IEEE Trans Control Netw
Syst 7(1):140-150

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Jiao J, Trentelman HL, Camlibel MK (2019) A suboptimality
approach to distributed linear quadratic optimal control. IEEE
Trans Autom Control 65(3):1218-1225

Trentelman HL, Stoorvogel AA, Hautus M (2012) Control theory
for linear systems. Springer Science & Business Media, Berlin
Michel O (2004) Cyberbotics 1td. webots™: professional mobile
robot simulation. Int J Adv Robot Syst 1(1):5

Garage W (2011) Turtlebot. Website: http://turtlebot.com/last
visited 11-25

Gallardo N, Pai K, Erol BA, Benavidez P, Jamshidi M (2016)
Formation control implementation using kobuki turtlebots and
parrot bebop drone. In: 2016 World automation congress (WAC).
IEEE, pp 1-6

Horton M, Chen L, Samanta B (2017) Enhancing the security
of iot enabled robotics: Protecting turtlebot file system and
communication. In: 2017 International conference on computing,
networking and communications (ICNC). IEEE, pp 662-666
Vicsek T, Czirdk A., Ben-Jacob E, Cohen I, Shochet O (1995)
Novel type of phase transition in a system of self-driven particles.
Phys Rev Lett 75(6):1226

Na S, Raoufi M, Turgut AE, Krajnik T, Arvin F (2019) Extended
artificial pheromone system for swarm robotic applications. In:
Artificial life conference proceedings. MIT Press, pp 608-615
Gao H, Xu Y, Yin Y, Zhang W, Li R, Wang X (2019)
Context-aware qos prediction with neural collaborative filtering
for internet-of-things services. IEEE Int Things J 7(5):4532—
4542

Ban Z, West C, Lennox B, Arvin F (2020) Self-organised flocking
with simulated homogeneous robotic swarm. In: EAI International
conference on collaborative computing

Sahin E. (2004) Swarm robotics: From sources of inspiration
to domains of application. In: International workshop on swarm
robotics. Springer, pp 10-20

Arvin F, Turgut AE, Krajnik T, Yue S (2016) Investigation of
cue-based aggregation in static and dynamic environments with a
mobile robot swarm. Adapt Behav 24(2):102-118

Arvin F, Turgut AE, Krajnik T, Rahimi S, Okay IE, Yue S, Watson
S, Lennox B (2018) dclust: Pheromone-based Aggregation for
Robotic Swarms. In: 2018 IEEE/RSJ International conference on
intelligent robots and systems (IROS). IEEE, pp 4288-4294

Jia Y, Vicsek T (2019) Modelling hierarchical flocking. New J
Phys 21(9):093,048

Sun G, Ma P, Ren J, Zhang A, Jia X (2018) A stability constrained
adaptive alpha for gravitational search algorithm. Knowl-Based
Syst 139:200-213

Zhang A, Sun G, Ren J, Li X, Wang Z, Jia X (2016) A dynamic
neighborhood learning-based gravitational search algorithm. IEEE
Trans Cybern 48(1):436-447

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer


https://doi.org/10.1109/TCSII.2021.3066555
http://turtlebot. com/last

	Self-Organised Collision-Free Flocking Mechanism in Heterogeneous Robot Swarms
	Abstract
	Introduction
	Flocking method
	Swarm mechanism
	Leader motion

	Experimental setup
	General foundation
	Swarm robotics experiments
	Leader test
	Metrics

	Results & discussion
	Effects of time
	Effects of population
	Effects of force
	Effects of desired distance
	Discussion

	Conclusion
	References


